Healthcare Resource Utilization and Cost Burden of Hemophilia B in the United States

Tyler W. Buckner¹, Kaitlin A. Hagan², Eli Orvis², Hongbo Yang², Eileen K. Sawyer³, Nanxin (Nick) Li³

¹Hemophilia and Thrombosis Center, University of Colorado School of Medicine, Aurora, CO, USA. ²Analysis Group, Inc., Boston, MA, USA. ³uniQure, Inc., Lexington, MA, USA.

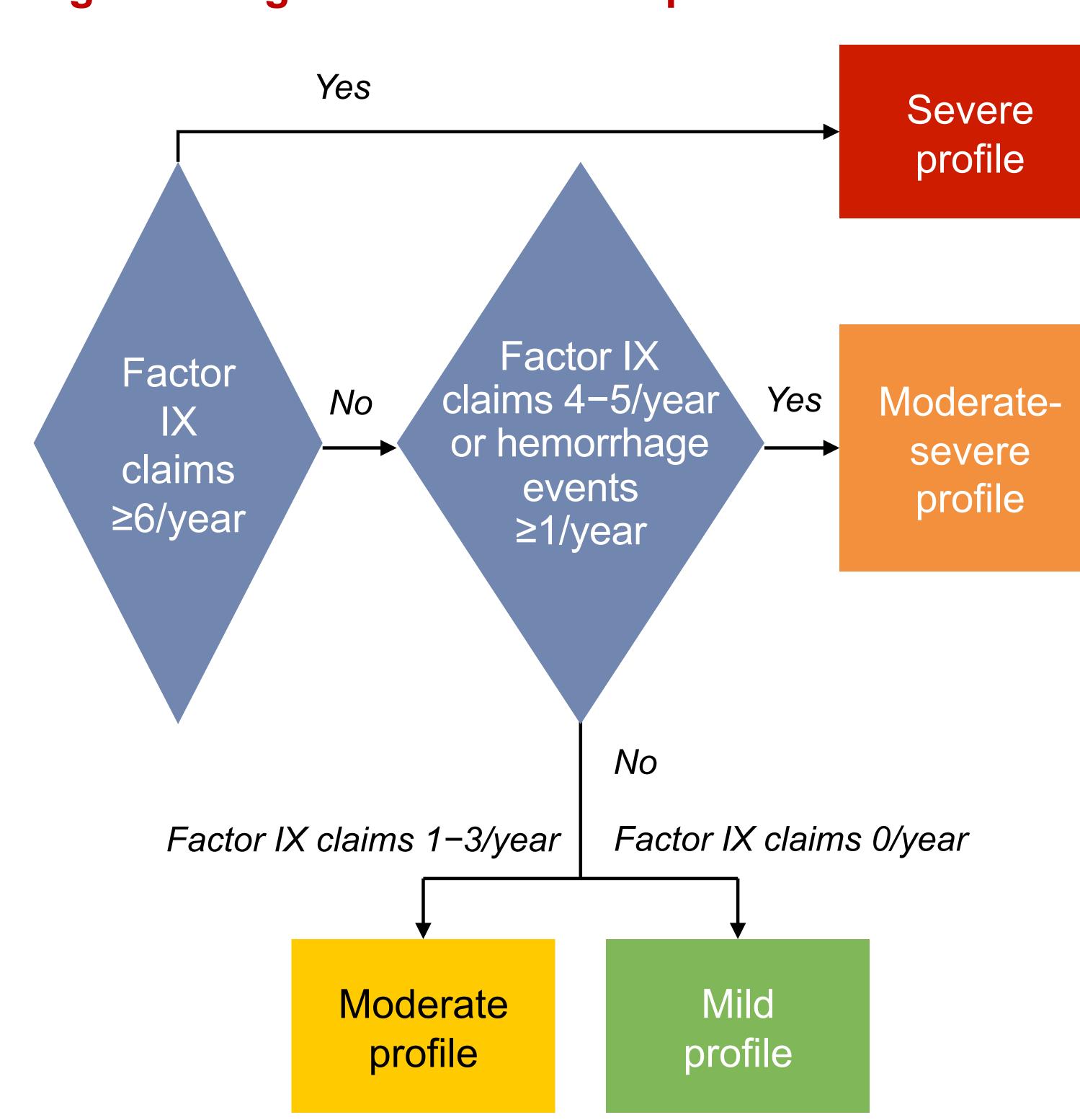
INTRODUCTION

- The number of people living with hemophilia B worldwide is over 30,000 and in the United States (US) alone is over 6,000.^{1,2}
- Despite the rarity of hemophilia B, it is associated with a substantial economic and societal burden.³
- Several studies have investigated the economic burden of hemophilia B using real-world administrative claims data, but focused on outcomes within the overall study sample^{4,5} or among patients receiving extended half-life vs. standard half-life factor IX (FIX) treatments.⁶
- To date, no studies have examined the economic burden of hemophilia B with stratification by disease severity or clinical profile.

OBJECTIVES

- To construct an insurance database algorithm to identify clinical profile of hemophilia B.
- To quantify healthcare resource utilization (HRU) and healthcare costs associated with hemophilia B from a US health system perspective, both overall and by clinical profile.

METHODS


Data source and study population

- This study used the IBM MarketScan® Commercial and Medicare Supplemental databases (06/2011-02/2019).
- Patients were included in the hemophilia B cohort if they met the following criteria:
- Adult male patients with ≥2 claims on separate dates with diagnosis of hemophilia B.
- Patients continuously enrolled for ≥1 year after (study period) and ≥1 year prior to (baseline period) the index date (see definition below).
- The dates of all medical visits associated with a hemophilia B diagnosis were considered as potential index dates. For patients with multiple qualifying index dates, one was randomly selected as their index date.
- A demographic-matched control sample of enrollees without any diagnoses for hemophilia B, hemophilia A, or other coagulation disorders (e.g., Von Willebrand's disease) was also generated.

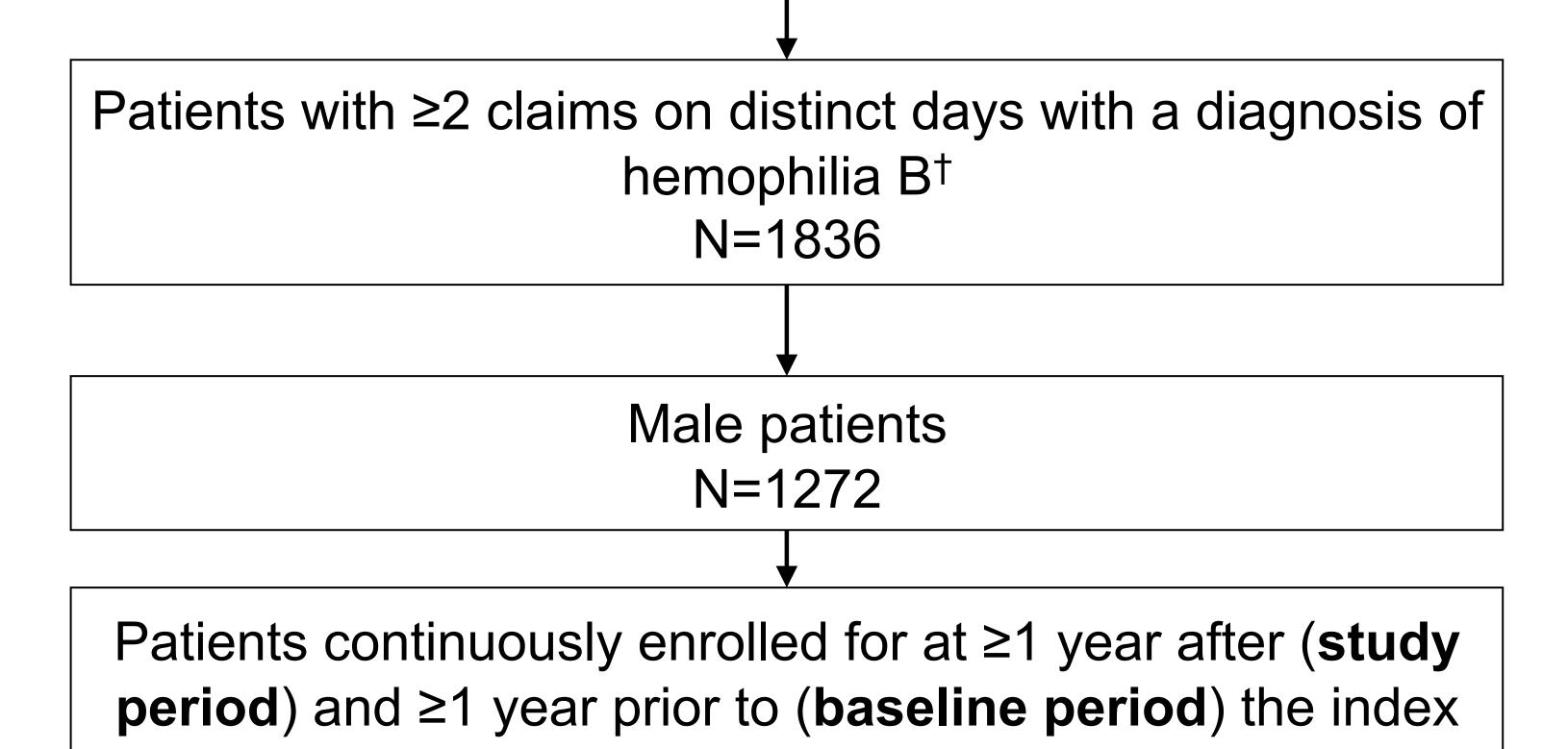
Algorithm for clinical profile

The clinical profile of hemophilia B was categorized as mild, moderate, moderate-severe, or severe, using a claims-based algorithm informed by literature^{7,8} and expert opinion (Figure 1).

Figure 1. Algorithm for clinical profile

Study outcomes and statistical analyses

- Patient characteristics at baseline and all-cause HRU and healthcare costs during the 1-year study period were compared between patients with hemophilia B vs. matched controls, both overall and with stratification by clinical profile.
- Statistical comparisons between patients with hemophilia B vs. matched controls were conducted using Wilcoxon signed-rank tests for continuous variables, and McNemar test for categorical variables.


RESULTS

Baseline characteristics

- A total of 454 patients with hemophilia B and 454 matched controls were included in the analysis (Figure 2).
- Patients with hemophilia B had a significantly higher comorbidity burden compared to matched controls (Charlson Comorbidity Index: 0.9 vs. 0.3, p<0.001) (Table 1).

Figure 2. Sample selection flow chart

Patients with ≥1 claim in the *IBM MarketScan*® *Commercial and Medicare Supplemental databases* (06/2011–02/2019) with a diagnosis of hemophilia B[†] N=3873

Adult patients (≥18 years old)[‡] N=454

[†]Hemophilia B was identified using ICD-9-CM code 286.1 or ICD-10-CM code D67. [‡]Patients with hemophilia B were matched 1:1 to control enrollees without hemophilia or other coagulation disorders (N=454).

Table 1. Baseline characteristics

Patient characteristics	Patients with hemophilia B N=454	Controls N=454	P-value	
Demographics				
Age (years), mean (SD)	46.0 (18.4)	46.0 (18.4)	1.000	
Geographic region, n (%)			1.000	
North central	132 (29.1%)	132 (29.1%)		
Northeast	90 (19.8%)	90 (19.8%)		
South	163 (35.9%)	163 (35.9%)		
West	69 (15.2%)	69 (15.2%)		
Insurance type, n (%)			1.000	
Comprehensive	33 (7.3%)	33 (7.3%)		
Preferred provider organization (PPO)	276 (60.8%)	276 (60.8%)		
Capitated	50 (11.0%)	50 (11.0%)		
Other	95 (20.9%)	95 (20.9%)		
Index year, n (%)			1.000	
2012-2013	184 (40.5%)	184 (40.5%)		
2014-2015	131 (28.9%)	131 (28.9%)		
2016-2018	139 (30.6%)	139 (30.6%)		
Comorbidities				
Charlson Comorbidity Index, mean (SD)	0.9 (1.7)	0.3 (0.9)	<0.001	
Hemophilia-related				
comorbidities, n (%)				
HIV/AIDS	17 (3.7%)	1 (0.2%)	<0.001	
Hepatitis B	7 (1.5%)	0 (0.0%)	0.008	
Hepatitis C	76 (16.7%)	2 (0.4%)	<0.001	

HRU and costs

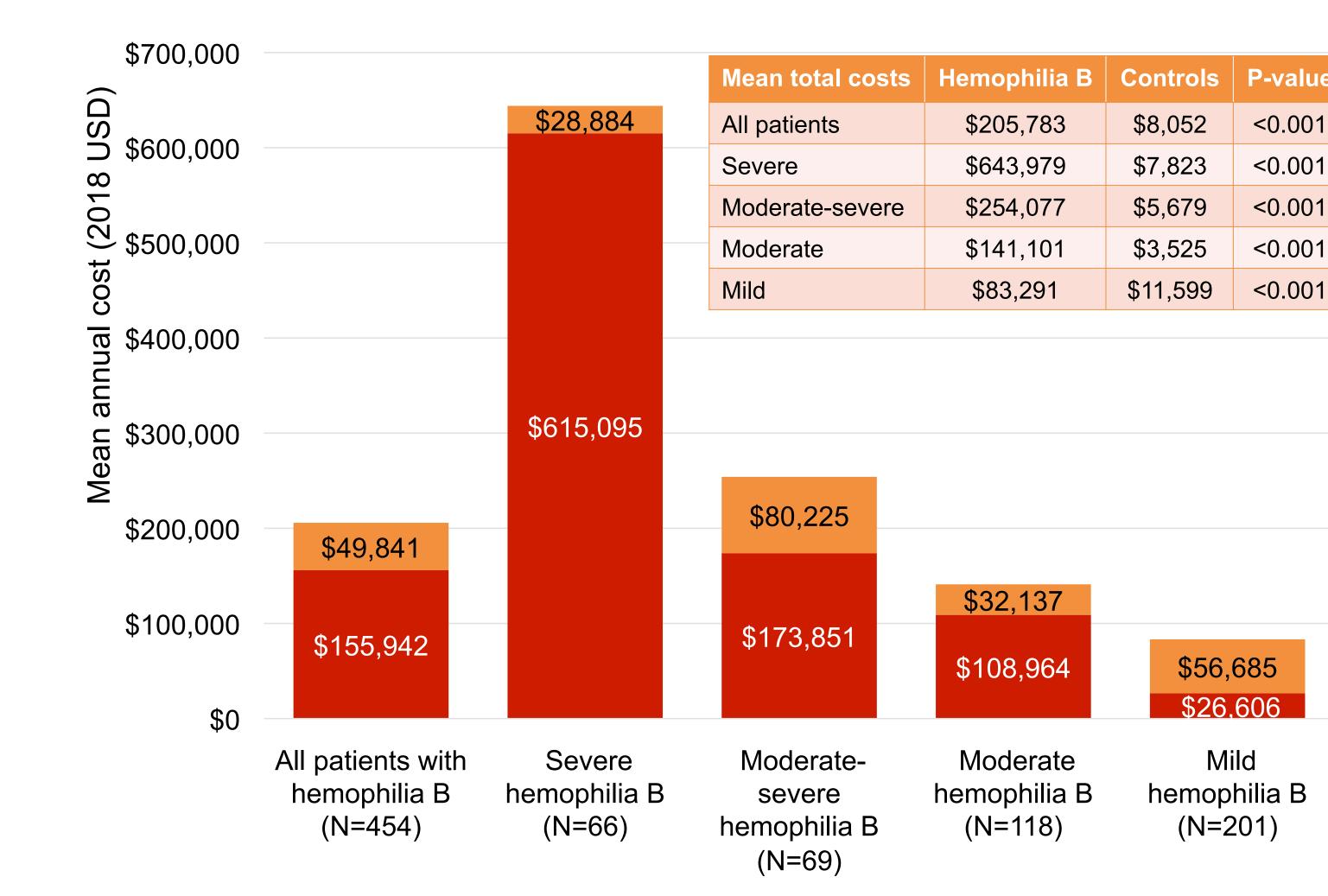

- Overall, patients with hemophilia B had over twice as many inpatient (IP) admissions (mean number of admissions: 0.3 vs. 0.1, p<0.001), emergency room (ER) visits (mean: 0.6 vs. 0.2, p<0.001), and outpatient (OP) visits (mean: 17.7 vs. 8.0, p<0.001; Table 2).</p>
- Use of prescribed opioids was significantly higher among patients with hemophilia B compared to matched controls, with patients in the severe cohort receiving on average 2-month supply of opioid prescriptions.
- Consistent with HRU results, healthcare costs were greater among patients with hemophilia B than matched controls across every category (all p<0.05) (Figure 3).
- Annual total healthcare costs increased with increasing severity of clinical profile, ranging from \$83,291 and \$141,101 in the mild and moderate cohorts, to \$254,077 and \$643,979 in the moderatesevere and severe cohorts.
- Hemophilia-related treatment costs accounted for 72% of total healthcare costs in patients with hemophilia B, and 94% in the severe cohort.

Table 2. Annual all-cause healthcare resource utilization

	Patients with hemophilia B	Controls	P- value
	N=454	N=454	
≥1 admission, n (%)			
IP admission	87 (19.2%)	26 (5.7%)	<0.001
ER visit	133 (29.3%)	64 (14.1%)	<0.001
OP visit	454 (100.0%)	366 (80.6%)	<0.001
Number of admissions, mean (SD)			
IP admissions	0.3 (0.6)	0.1 (0.3)	<0.001
Days of hospitalization	1.2 (3.7)	0.3 (1.5)	<0.001
ER visits	0.6 (1.2)	0.2 (0.6)	<0.001
OP visits	17.7 (22.9)	8.0 (11.0)	<0.001
≥1 specialist visit,‡ n (%)			
Hematologist	289 (63.7%)	34 (7.5%)	<0.001
Orthopedist	151 (33.3%)	81 (17.8%)	<0.001
Psychologist/psychiatrist	45 (9.9%)	21 (4.6%)	0.002
Prescribed opioids			
≥ 1 prescription, n (%)	185 (40.7%)	102 (22.5%)	<0.001
Days of supply, mean (SD)	35.2 (114.1)	9.9 (39.1)	<0.001

[‡]Specialist visits were identified based on provider type or Current Procedural Terminology code reported on a claim.

Figure 3. Annual healthcare costs

Pharmacy Medical services

LIMITATIONS

- In the absence of laboratory data that is integrated with the administrative claims data, it was not feasible to formally validate the claims-based profile identification algorithm against clotting factor level.
- Administrative claims only capture clinical events that result in medical service use. Consequently, bleeding events were likely to be under-identified using claims data as a result of bleeding events that were treated and resolved at home.

CONCLUSIONS

- Hemophilia B is associated with substantial healthcare resource use and costs in the US. The significant economic burden measured in this study highlights that unmet needs remain in hemophilia B.
- The claims-based algorithm developed in the present study may support opportunities to expand uses of existing claims databases to understand the burden of disease of hemophilia B from a US health system perspective.

REFERENCES

- 1. World Federation of Hemophilia. Annual global survey 2017. October 2018.
- 2. CDC. Community Counts Registry for Bleeding Disorders Surveillance.

 3. Chen CX, et al. Value Health, 2017:20(8):1074-1082
- 3. Chen CX, et al. *Value Health*. 2017;20(8):1074-1082.
 4. Eldar-Lissai A, et al. ISPOR 20th Annual International Meeting, May 2015.
- 5. Guh S, et al. *Haemophilia*. 2012;18(2):268-275.
- 6. Tortella BJ, et al. *J Manag Care Spec Pharm.* 2018;24(7):643-653.
- 7. National Hemophilia Foundation. MASAC recommendations concerning prophylaxis. February, 2016.
- 8. Castaman G. Expert Rev Hematol. 2018;11(8):673-683.

DISCLOSURES

uniQure, Inc. provided funding for this research to Analysis Group, Inc.