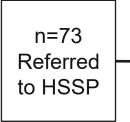
PEDIATRIC HEPATITIS C PATIENT OUTCOMES IN A TERTIARY ACADEMIC MEDICAL CENTER UTILIZING **AN INTEGRATED HEALTH SYSTEM SPECIALTY PHARMACY MODEL**

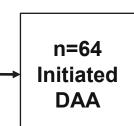
ALICIA B. CARVER, PHARMD, BCPS, CSP¹ | CORI EDMONDS, PHARMD, BCPS, CSP¹ | KRISTEN WHELCHEL, PHARMD, CSP¹ | RYAN MOORE, MS² | LEENA CHOI, PHD² | LYNETTE GILLIS, MD^{3,} ¹VANDERBILT SPECIALTY PHARMACY, VANDERBILT UNIVERSITY MEDICAL CENTER, ²DEPARTMENT OF BIOSTATISTICS, VANDERBILT UNIVERSITY MEDICAL CENTER, ³DEPARTMENT OF PEDIATRIC GASTROENTEROLOGY, HEPATOLOGY AND NUTRITION, MONROE CARELL JR. CHILDREN'S HOSPITAL AT VANDERBILT, ⁴UNIVERSITY OF LOUISVILLE SCHOOL OF MEDICINE

BACKGROUND

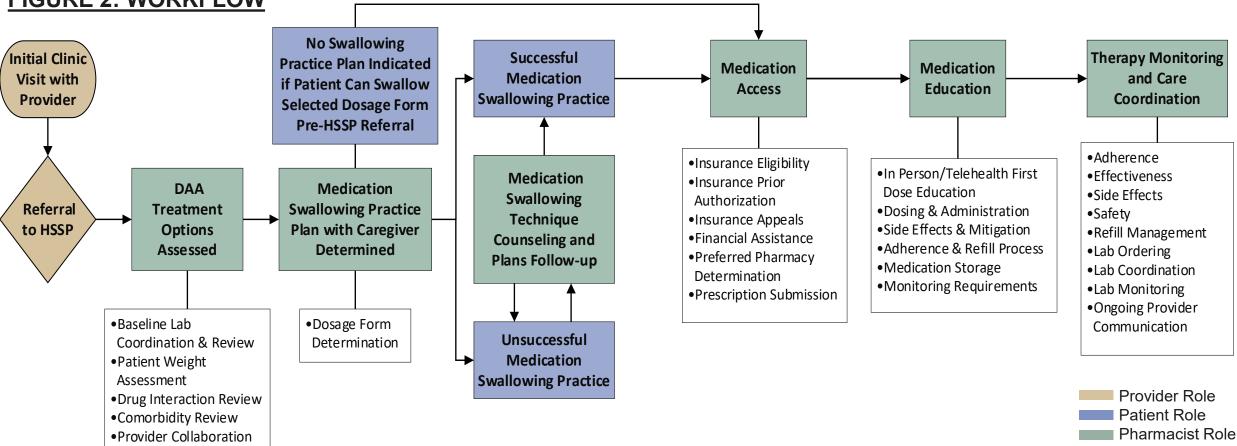

- Real-world data utilizing direct-acting antivirals (DAAs) in patients aged <18 years with chronic hepatitis C (CHC) in countries outside of the United States demonstrates high efficacy and tolerability, however similar data is lacking in the United States where barriers to DAA accessibility have been reported.
- Pediatric hepatologists in the Pediatric Hepatology Clinic at the Monroe Carell, Jr. Children's Hospital at Vanderbilt (MCJCHV) began utilizing an integrated Health System Specialty Pharmacy (HSSP) model in 2017 to assist with DAA selection, initiation and management in CHC patients aged <18 years.
- **OBJECTIVE:** Evaluate the efficacy of DAAs for CHC pediatric patients utilizing an HSSP model.

METHODS

r				
Design	Single-center, retrospective, cohort study			
Sample	Patients <18 years old who were evaluated and referred to the HSSP for DAA initiation by a pediatric hepatologist at the Pediatric Hepatology Clinic at MCJCHV			
Exclusion Criteria	Patients never initiating DAA			
Study Period	January 2017 - September 2022			
Primary Outcome	Rates of sustained virologic response (SVR) at least 12 weeks post-DAA completion			
Secondary Outcomes	Initial DAA swallowing success frequency and rates of response, patient- reported side effects, patient-reported adherence rates, drug-drug interaction (DDI) rate and DDI management			


FIGURE 1: PATIENT REFERRAL OUTCOMES

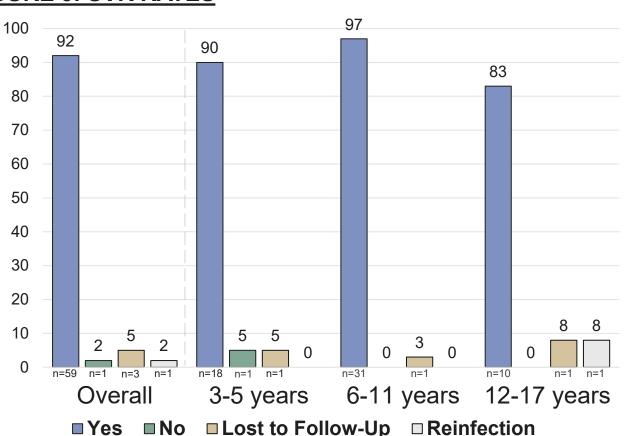
n=1 New Pregnancy



Reasons for Not Initiating DAA n=4 Ongoing Swallowing Practice n=3 Lost to Follow-Up

n=1 Treated by Local Provider

FIGURE 2: WORKFLOW


TABLE 1: BASELINE CHARACTERISTICS

	3-5 years	6-11 years	12-17 years	Overall
	n=20	n=32	n=12	n=64
Median age, years (IQR)	5 (4-5)	7 (6-8.25)	15 (13.75-15.25)	6 (5-9.25)
Male, n (%)	12 (60%)	13 (41%)	3 (25%)	28 (44%)
White, n (%)	14 (70%)	25 (78%)	8 (67%)	47 (73%)
Weight, kg - median (IQR)	18.8 (17.1-20.8)	27.3 (24.8-33.3)	55.7 (43.5-62.4)	26.6 (19.9-38.9)
Height, cm - median (IQR)	105 (101-110)	124 (118-132)	157 (151-163)	120 (110-141)
BMI, kg/m ² - median (IQR)	17 (15.4-18.3)	17.6 (16.5-20.5)	21.8 (19.2-24.8)	18 (16.3-21.6)
Genotype, n (%)				
1	17 (85%)	22 (69%)	10 (83%)	49 (77%)
2	1 (5%)	2 (6%)	0 (0%)	3 (5%)
3	2 (10%)	8 (25%)	1 (8%)	11 (17%)
4	0 (0%)	0 (0%)	1 (8%)	1 (2%)
Cirrhosis, n (%)	0 (0%)	1 (3%)	0 (0%)	1 (2%)
Treatment experienced, n (%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Baseline viral load, IU/mL-	852,079	1,396,356	554,147	1,077,115
median (IQR)	(295,219 - 3,668,653)	(423,922 - 2,928,785)	(349,904 - 2,215,088)	(392,422 - 3,240,835)
Baseline AST, U/L- median (IQR)	56.5 (44.8-72.0)	42 (33.8-54.2)	37 (30.2-50.5)	45.5 (34.8-62.0)
Baseline ALT, U/L- median (IQR)	64 (41.0-88.2)	45.5 (33.8-65.0)	48 (29.8-70.0)	49.5 (34.0-79.0)
Treatment regimen, n (%)				
LDV/SOF 90/400mg T x12	0 (0%)	3 (9%)	8 (67%)	11 (17%)
LDV/SOF 45/200mg T x12	11 (55%)	15 (47%)	0 (0%)	26 (41%)
LDV/SOF 45/200mg P x12	2 (10%)	1 (3%)	0 (0%)	3 (5%)
LDV/SOF 33.75/150mg P x12	3 (15%)	0 (0%)	0 (0%)	3 (5%)
SOF/VEL 400/100mg T x12	0 (0%)	4 (13%)	0 (0%)	4 (6%)
SOF/VEL 400/100mg P x12	0 (0%)	2 (6%)	0 (0%)	2 (3%)
SOF/VEL 200/50mg T x12	3 (15%)	7 (22%)	0 (0%)	10 (16%)
SOF/VEL 200/50mg P x12	1 (5%)	0 (0%)	0 (0%)	1 (2%)
GLE/PIB 300/120mg T x8	0 (0%)	0 (0%)	4 (33%)	4 (6%)
Insurance type, n (%)				
Medicaid	17 (85%)	26 (81%)	10 (83%)	53 (83%)
Commercial	3 (15%)	6 (19%)	2 (17%)	11 (17%)

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; GLE/PIB, glecaprevir/pibrentasvir; IQR, interquartile range; LDV/SOF, ledipasvir/sofosbuvir P, pellets; SOF/VEL, sofosbuvir/velpatasvir; T, tablets

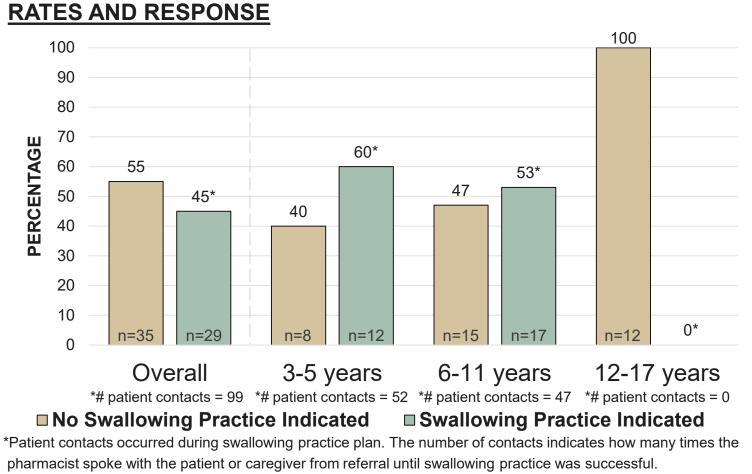
RESULTS

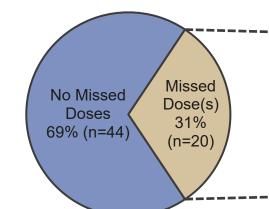
FIGURE 3: SVR RATES

TABLE 2: PATIENT-REPORTED SIDE EFFECTS

	LDV/SOF (n=43) n	SOF/VEL (n=17) n	GLE/PIB (n=4) n	TOTAL (n=64) n				
Patients reporting any side effect, n (%)	23 (54%)	9 (53%)	2 (50%)	34 (53%)				
Headache	9	4	0	13				
Fatigue	9	3	1	13				
Nausea	4	4	1	9				
Vomiting	3	3	1	7				
Sleep Disturbances	3	2	0	5				
Joint Pain	1	0	0	1				
Behavioral Changes	3	1	0	4				
Appetite Changes	2	0	0	2				
Constipation	1	0	0	1				
Abdominal Pain	2	0	0	2				
Pruritis	0	0	1	1				
Tinnitus	0	1	0	1				
Coagulopathy	2	0	0	2				
Herpes Outbreak	1	0	0	1				
Dyspepsia	0	2	0	2				

- SVR rates in patients <18 years of age.

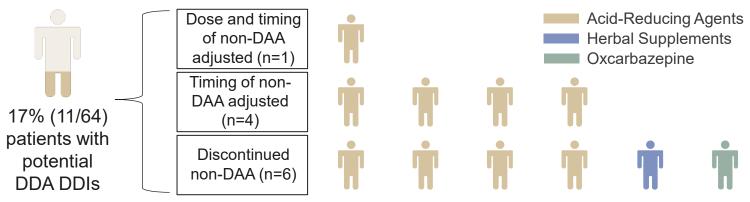

- Drug interactions were minimal and managed by the pharmacist.


VANDERBILT VUNIVERSITY

MEDICAL CENTER

RESULTS **FIGURE 4: MEDICATION SWALLOWING PRACTICE SUCCESS**

FIGURE 5: ADHERENCE RATES



Reasons for Missed Doses

Unknown (n=6) Vomiting (n=6) Swallowing Difficulty (n=4) Forgetfulness (n=2) Alternate Caregiver (n=1) Insurance Lapse (n=1)

Median number of doses missed = 2 Note: The only patient that did not achieve SVR reported 13 missed doses

FIGURE 6: DRUG-DRUG INTERACTIONS AND MANAGEMENT

CONCLUSIONS

• Utilization of an integrated HSSP model for DAA selection, insurance approval, initiation and management yielded high

· Just under half of patients were unable to swallow medication practice dosage form at initial clinic visit and subsequently required numerous pharmacist contacts to successfully swallow practice medication.

• More than half of patients reported a potential side effect, with the most common being headache, fatigue, nausea,

vomiting, behavioral changes and sleep disturbances. No side effect resulted in treatment discontinuation.

• Missed doses were infrequent and most commonly due to vomiting or medication administration difficulty.

All authors have no relevant financial relationships to disclose.